logo
Software
Sector
Learning
Resources
Blogs
About us
Licensing
Contact
Will COP26 resolve the global food supply conundrum?

Tim Bean

a month ago

With COP26 just a few days away, I can’t help but think we are at one of the most important points of inflection the world has faced. After years of argument, climate change is now generally accepted as real, very real, and the impact on the planet and humanity is both increasingly understood and imminent. This is not a time for political bickering, but for coming together and genuinely working as a species to protect not only our own existence, but the existence of every species we share the planet with.

“Grand words for an ordinary fella from Nottingham”, you might be thinking, and I’d agree. But this is something that I, like many others, feel increasingly motivated by. And is that a surprise, given I’d like to think my son and his children will be fortunate enough to have the same kind of existence I’ve had? 

Data, analytics and technology can help

Back in 2020, mid-pandemic, I joined VSNi because I felt a significant affinity with what VSNi as a commercial organisation is trying to achieve. Not because we develop analytical software (although that is what we do and I have always had a keen interest in using data to make better decisions), but an affinity with WHY we do it. VSNi’s vision is “to see the challenges of global food production eradicated through the effective application of data analytics and technology”, and that is something that I and my colleagues at VSNi are motivated by and jump out of bed every day with a vigour to pursue.

More mouths to feed compounded by pressure on food production systems

With a global population set to exceed 9 billion by 2050, the human race’s ability to feed itself will quickly become a challenge for everyone, not just subsistence farmers. In the developed world we benefit from advanced agricultural production and distribution techniques, supported by technology, and financed by strong economies. Most of the world’s population, however, do not have those advantages. Subsistence farming feeds more of the planet’s population than not, in parts of the world where the population increase is set to be greatest, and it is subsistence farming that is most at risk from climate change. It is tempting to conclude that this is a problem that cannot be solved.

To focus product development activity on our vision, the VSNI mission is “to provide highly valued, instantly accessible and intuitively usable world leading analytical software and data that will enable continual, sustainable improvements in the effectiveness and efficiency of food production: benefitting our customers, our people, our owners and our planet”. VSNi’s software is used by plant and animal breeding companies, scientific researchers, and global “not-for-profit” organisations to help identify, through sophisticated data analytics, opportunities to improve agricultural (and other ecological) outputs. This is something we are immensely proud of. 

Addressing the challenges of the developing world’s smallholders

As we turn our attention to developing new products and services designed to address the challenges of global food production, it is in the support of the worlds smallholders that we feel the greatest opportunity to help exists. “How can we bring the advantages of tech, data and analytics to support the millions of smallholders in the developing world?”, is the question we are focused on answering.

It’s a complex problem and of course, tech, data and analytics won’t solve the problem alone. Individual choices must start to change too, particularly in the developed world. It seems inevitable that we must reduce our consumption of meat products, make choices to eat foods produced closer to home and address the criminal problem of food waste to name but three.

Will COP26 deliver the global cooperation that is needed?

The second goal of COP26  is “adapt to protect communities and natural habitats”, specifically to “build defences, warning systems and resilient infrastructure and agriculture to avoid loss of homes, livelihoods and even lives”. Alok Sharma, COP President-Designate said “we must change the way we look after our land and seas and how we grow our food. This is also important if we want to protect and restore the world's biodiversity, upon which all life depends”.

Hard to argue against. For the sake of us all, let’s hope this is achieved.

Tim Bean FIDM, Chief Commercial Officer, VSNi

About the author

Tim Bean is Chief Commercial Officer at VSNi and a Fellow of the Institute of Data & Marketing for over 20 years. His 30-year career has focused on using data to support decision making. This has been applied mainly in the value management of large consumer and business customer bases and he has held senior positions in telecommunications, utilities, retail and third sector organisations. In 2020 Tim joined VSNi specifically to focus on expanding the reach of data analytics and technology to address the challenges of climate change and securing a sustainable global food supply.

Related Reads

READ MORE

The VSNi Team

7 months ago
Should I drop the outliers from my analysis?

Outliers are sample observations that are either much larger or much smaller than the other observations in a dataset. Outliers can skew your dataset, so how should you deal with them?

An example outlier problem

Imagine Jane, the general manager of a chain of computer stores, has asked a statistician, Vanessa, to assist her with the analysis of data on the daily sales at the stores she manages. Vanessa takes a look at the data, and produces a boxplot for each of the stores as shown below.

alt text

alt text

What do you notice about the data?

Vanessa pointed out to Jane the presence of outliers in the data from Store 2 on days 10 and 22. Vanessa recommended that Jane checks the accuracy of the data. Are the outliers due to recording or measurement error? If the outliers can’t be attributed to errors in the data, Jane should investigate what might have caused the increased sales on these two particular days. Always investigate outliers - this will help you better understand the data, how it was generated and how to analyse it.

Should we remove the outliers?

Vanessa explained to Jane that we should never drop a data value just because it is an outlier. The nature of the outlier should be investigated before deciding what to do.

Whenever there are outliers in the data, we should look for possible causes of error in the data. If you find an error but cannot recover the correct data value, then you should replace the incorrect data value with a missing value.

alt text

However, outliers can also be real observations, and sometimes these are the most interesting ones! If your outlier can’t be attributed to an error, you shouldn’t remove it from the dataset. Removing data values unnecessarily, just because they are outliers, introduces bias and may lead you to draw the wrong conclusions from your study.

What should we do if we need/want to keep the outlier?

  • Transform the data: if the dataset is not normally distributed, we can try transforming the data to normalize it. For example, if the data set has some high-value outliers (i.e. is right skewed), the log transformation will “pull” the high values in. This often works well for count data.
  • Try a different model/analysis: different analyses may make different distributional assumptions, and you should pick one that is appropriate for your data. For example, count data are generally assumed to follow a Poisson distribution. Alternatively, the outliers may be able to be modelled using an appropriate explanatory variable. For example, computer sales may increase as we approach the start of a new school year.

In our example, Vanessa suggested that since the mean for Store 2 is highly influenced by the outliers, the median, another measure of central tendency, seems more appropriate for summarizing the daily sales at each store. Using the statistical software Genstat, Vanessa can easily calculate both the mean and median number of sales per store for Jane.

alt text

Vanessa also analyses the data assuming the daily sales have Poisson distributions, by fitting a log-linear model.

alt text

alt text

Notice that Vanessa has included “Day” as a blocking factor in the model to allow for variability due to temporal effects.  

From this analysis, Vanessa and Jane conclude that the means (of the Poisson distributions) differ between the stores (p-value < 0.001). Store 3, on average, has the most computer sales per day, whereas Stores 1 and 4, on average, have the least.

alt text

alt text

There are other statistical approaches Vanessa might have used to analyse Jane’s sales data, including a one-way ANOVA blocked by Day on the log-transformed sales data and Friedman’s non-parametric ANOVA. Both approaches are available in Genstat’s comprehensive menu system.

alt text

What is the best method to deal with outliers?

There are many ways to deal with outliers, but no single method will work in every situation. As we have learnt, we can remove an observation if we have evidence it is an error. But, if that is not the case, we can always use alternative summary statistics, or even different statistical approaches, that accommodate them.

READ MORE

Dr. John Rogers

9 months ago
50 years of bioscience statistics

Earlier this year I had an enquiry from Carey Langley of VSNi as to why I had not renewed my Genstat licence. The truth was simple – I have decided to fully retire after 50 years as an agricultural entomologist / applied biologist / consultant. This prompted some reflections about the evolution of bioscience data analysis that I have experienced over that half century, a period during which most of my focus was the interaction between insects and their plant hosts; both how insect feeding impacts on plant growth and crop yield, and how plants impact on the development of the insects that feed on them and on their natural enemies.

Where it began – paper and post

My journey into bioscience data analysis started with undergraduate courses in biometry – yes, it was an agriculture faculty, so it was biometry not statistics. We started doing statistical analyses using full keyboard Monroe calculators (for those of you who don’t know what I am talking about, you can find them here).  It was a simpler time and as undergraduates we thought it was hugely funny to divide 1 by 0 until the blue smoke came out…

After leaving university in the early 1970s, I started working for the Agriculture Department of an Australian state government, at a small country research station. Statistical analysis was rudimentary to say the least. If you were motivated, there was always the option of running analyses yourself by hand, given the appearance of the first scientific calculators in the early 1970s. If you wanted a formal statistical analysis of your data, you would mail off a paper copy of the raw data to Biometry Branch… and wait.  Some months later, you would get back your ANOVA, regression, or whatever the biometrician thought appropriate to do, on paper with some indication of what treatments were different from what other treatments.  Dose-mortality data was dealt with by manually plotting data onto probit paper. 

Enter the mainframe

In-house ANOVA programs running on central mainframes were a step forward some years later as it at least enabled us to run our own analyses, as long as you wanted to do an ANOVA…. However, it also required a 2 hours’ drive to the nearest card reader, with the actual computer a further 1000 kilometres away.… The first desktop computer I used for statistical analysis was in the early 1980s and was a CP/M machine with two 8-inch floppy discs with, I think, 256k of memory, and booting it required turning a key and pressing the blue button - yes, really! And about the same time, the local agricultural economist drove us crazy extolling the virtues of a program called Lotus 1-2-3!

Having been brought up on a solid diet of the classic texts such as Steele and Torrie, Cochran and Cox and Sokal and Rohlf, the primary frustration during this period was not having ready access to the statistical analyses you knew were appropriate for your data. Typical modes of operating for agricultural scientists in that era were randomised blocks of various degrees of complexity, thus the emphasis on ANOVA in the software that was available in-house. Those of us who also had less-structured ecological data were less well catered for.

My first access to a comprehensive statistics package was during the early to mid-1980s at one of the American Land Grant universities. It was a revelation to be able to run virtually whatever statistical test deemed necessary. Access to non-linear regression was a definite plus, given the non-linear nature of many biological responses. As well, being able to run a series of models to test specific hypotheses opened up new options for more elegant and insightful analyses. Looking back from 2021, such things look very trivial, but compared to where we came from in the 1970s, they were significant steps forward.

Enter Genstat

My first exposure to Genstat, VSNi’s stalwart statistical software package, was Genstat for Windows, Third Edition (1997). Simple things like the availability of residual plots made a difference for us entomologists, given that much of our data had non-normal errors; it took the guesswork out of whether and what transformations to use. The availability of regressions with grouped data also opened some previously closed doors. 

After a deviation away from hands-on research, I came back to biological-data analysis in the mid-2000s and found myself working with repeated-measures and survival / mortality data, so ventured into repeated-measures restricted maximum likelihood analyses and generalised linear mixed models for the first time (with assistance from a couple of Roger Payne’s training courses in Hobart and Queenstown). Looking back, it is interesting how quickly I became blasé about such computationally intensive analyses that would run in seconds on my laptop or desktop, forgetting that I was doing ANOVAs by hand 40 years earlier when John Nelder was developing generalised linear models. How the world has changed!

Partnership and support

Of importance to my Genstat experience was the level of support that was available to me as a Genstat licensee. Over the last 15 years or so, as I attempted some of these more complex analyses, my aspirations were somewhat ahead of my abilities, and it was always reassuring to know that Genstat Support was only ever an email away. A couple of examples will flesh this out. 

Back in 2008, I was working on the relationship between insect-pest density and crop yield using R2LINES, but had extra linear X’s related to plant vigour in addition to the measure of pest infestation. A support-enquiry email produced an overnight response from Roger Payne that basically said, “Try this”. While I slept, Roger had written an extension to R2LINES to incorporate extra linear X’s. This was later incorporated into the regular releases of Genstat. This work led to the clearer specification of the pest densities that warranted chemical control in soybeans and dry beans (https://doi.org/10.1016/j.cropro.2009.08.016 and https://doi.org/10.1016/j.cropro.2009.08.015).

More recently, I was attempting to disentangle the effects on caterpillar mortality of the two Cry insecticidal proteins in transgenic cotton and, while I got close, I would not have got the analysis to run properly without Roger’s support. The data was scant in the bottom half of the overall dose-response curves for both Cry proteins, but it was possible to fit asymptotic exponentials that modelled the upper half of each curve. The final double-exponential response surface I fitted with Roger’s assistance showed clearly that the dose-mortality response was stronger for one of the Cry proteins than the other, and that there was no synergistic action between the two proteins (https://doi.org/10.1016/j.cropro.2015.10.013

The value of a comprehensive statistics package

One thing that I especially appreciate about having access to a comprehensive statistics package such as Genstat is having the capacity to tease apart biological data to get at the underlying relationships. About 10 years ago, I was asked to look at some data on the impact of cold stress on the expression of the Cry2Ab insecticidal protein in transgenic cotton. The data set was seemingly simple - two years of pot-trial data where groups of pots were either left out overnight or protected from low overnight temperatures by being moved into a glasshouse, plus temperature data and Cry2Ab protein levels. A REML analysis, and some correlations and regressions enabled me to show that cold overnight temperatures did reduce Cry2Ab protein levels, that the effects occurred for up to 6 days after the cold period and that the threshold for these effects was approximately 14 Cº (https://doi.org/10.1603/EC09369). What I took from this piece of work is how powerful a comprehensive statistics package can be in teasing apart important biological insights from what was seemingly very simple data. Note that I did not use any statistics that were cutting edge, just a combination of REML, correlation and regression analyses, but used these techniques to guide the dissection of the relationships in the data to end up with an elegant and insightful outcome.

Final reflections

Looking back over 50 years of work, one thing stands out for me: the huge advances that have occurred in the statistical analysis of biological data has allowed much more insightful statistical analyses that has, in turn, allowed biological scientists to more elegantly pull apart the interactions between insects and their plant hosts. 

For me, Genstat has played a pivotal role in that process. I shall miss it.

Dr John Rogers

Research Connections and Consulting

St Lucia, Queensland 4067, Australia

Phone/Fax: +61 (0)7 3720 9065

Mobile: 0409 200 701

Email: john.rogers@rcac.net.au

Alternate email: D.John.Rogers@gmail.com

READ MORE

Kanchana Punyawaew

9 months ago
Linear mixed models: a balanced lattice square

This blog illustrates how to analyze data from a field experiment with a balanced lattice square design using linear mixed models. We’ll consider two models: the balanced lattice square model and a spatial model.

The example data are from a field experiment conducted at Slate Hall Farm, UK, in 1976 (Gilmour et al., 1995). The experiment was set up to compare the performance of 25 varieties of barley and was designed as a balanced lattice square with six replicates laid out in a 10 x 15 rectangular grid. Each replicate contained exactly one plot for every variety. The variety grown in each plot, and the coding of the replicates and lattice blocks, is shown in the field layout below:

alt text

There are seven columns in the data frame: five blocking factors (Rep, RowRep, ColRep, Row, Column), one treatment factor, Variety, and the response variate, yield.

alt text

The six replicates are numbered from 1 to 6 (Rep). The lattice block numbering is coded within replicates. That is, within each replicates the lattice rows (RowRep) and lattice columns (ColRep) are both numbered from 1 to 5. The Row and Column factors define the row and column positions within the field (rather than within each replicate).

Analysis of a balanced lattice square design

To analyze the response variable, yield, we need to identify the two basic components of the experiment: the treatment structure and the blocking (or design) structure. The treatment structure consists of the set of treatments, or treatment combinations, selected to study or to compare. In our example, there is one treatment factor with 25 levels, Variety (i.e. the 25 different varieties of barley). The blocking structure of replicates (Rep), lattice rows within replicates (Rep:RowRep), and lattice columns within replicates (Rep:ColRep) reflects the balanced lattice square design. In a mixed model analysis, the treatment factors are (usually) fitted as fixed effects and the blocking factors as random.

The balanced lattice square model is fitted in ASReml-R4 using the following code:

> lattice.asr <- asreml(fixed = yield ~ Variety,
                        random = ~ Rep + Rep:RowRep + Rep:ColRep,
                        data=data1)

The REML log-likelihood is -707.786.

The model’s BIC is:

alt text

The estimated variance components are:

alt text

The table above contains the estimated variance components for all terms in the random model. The variance component measures the inherent variability of the term, over and above the variability of the sub-units of which it is composed. The variance components for Rep, Rep:RowRep and Rep:ColRep are estimated as 4263, 15596, and 14813, respectively. As is typical, the largest unit (replicate) is more variable than its sub-units (lattice rows and columns within replicates). The "units!R" component is the residual variance.

By default, fixed effects in ASReml-R4 are tested using sequential Wald tests:

alt text

In this example, there are two terms in the summary table: the overall mean, (Intercept), and Variety. As the tests are sequential, the effect of the Variety is assessed by calculating the change in sums of squares between the two models (Intercept)+Variety and (Intercept). The p-value (Pr(Chisq)) of  < 2.2 x 10-16 indicates that Variety is a highly significant.

The predicted means for the Variety can be obtained using the predict() function. The standard error of the difference between any pair of variety means is 62. Note: all variety means have the same standard error as the design is balanced.

alt text

Note: the same analysis is obtained when the random model is redefined as replicates (Rep), rows within replicates (Rep:Row) and columns within replicates (Rep:Column).

Spatial analysis of a field experiment

As the plots are laid out in a grid, the data can also be analyzed using a spatial model. We’ll illustrate spatial analysis by fitting a model with a separable first order autoregressive process in the field row (Row) and field column (Column) directions. This is often a useful model to start the spatial modeling process.

The separable first order autoregressive spatial model is fitted in ASReml-R4 using the following code:

> spatial.asr <- asreml(fixed = yield ~ Variety,
                        residual = ~ar1(Row):ar1(Column),
                        data = data1)

The BIC for this spatial model is:

alt text

The estimated variance components and sequential Wald tests are:

alt text

alt text

The residual variance is 38713, the estimated row correlation is 0.458, and the estimated column correlation is 0.684. As for the balanced lattice square model, there is strong evidence of a Variety effect (p-value < 2.2 x 10-16).

A log-likelihood ratio test cannot be used to compare the balanced lattice square model with the spatial models, as the variance models are not nested. However, the two models can be compared using BIC. As the spatial model has a smaller BIC (1415) than the balanced lattice square model (1435), of the two models explored in this blog, it is chosen as the preferred model. However, selecting the optimal spatial model can be difficult. The current spatial model can be extended by including measurement error (or nugget effect) or revised by selecting a different variance model for the spatial effects.

References

Butler, D.G., Cullis, B.R., Gilmour, A. R., Gogel, B.G. and Thompson, R. (2017). ASReml-R Reference Manual Version 4. VSN International Ltd, Hemel Hempstead, HP2 4TP UK.

Gilmour, A. R., Anderson, R. D. and Rae, A. L. (1995). The analysis of binomial data by a generalised linear mixed model, Biometrika 72: 593-599..

plant
plant
plant
A world leader in the advancement and application of algorithmic and analytical content for the smart/precision biotech sector

Follow us

youtube     twitter     linkedin
Copyright © 2000-2021 VSN International Ltd. | Privacy Policy | EULA | Terms & Conditions | Sitemap
VSN International Limited is registered in England & Wales, company number: 4027977 VAT number: GB750 0348 63