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Preface

ASRtriala is a companion package for ASReml-R to help audit and prepare the data, and
select a best model for the analysis of field trials. A set of spatial and non-spatial models can
be pre-defined to be fitted, and then the best single-trial model selected can be used as final
analysis, or as the first part of a two-stage multi-environment trial (MET) analysis. For the
second step, ASRtriala has functions available to fit a range of MET model structures.
The main tasks included are:

• Auditing and preparing single-trial data and MET data.
• Fitting and selecting a single-trial model using ASReml-R.
• Fitting and selecting a MET model using ASReml-R.
• Enhancing output from MET models.

The main goal of this package is to assist with semi-automatic pipelines to perform spatial
and/or non-spatial analyses of field trials and to use this output in the fitting of MET
models with complex variance-covariance structures to model GxE as nested effects. The
latter, focuses on the use of the two-stage analyses as proposed by Smith et al. (2001a).
To achieve the best use of the data and to increase the success on the implementation of this
workflow, we have added functions that will help audit and prepare the data. This includes,
for example, calculation of relevant summary statistics together with an assessment of the
MET data in aspects such as connectivity and variability.
There are two functions that will fit user-specified single-trial and MET models using
ASReml-R (Butler et al. 2017) in the background. These functions can be used to fit
multiple spatial and non-spatial models for single-trial analyses or multiple GxE structures
for MET analyses. They allow for the selection of the best model according to a choice of
goodness-of-fit statistics. These routines also allow for detection of outliers, and provide
several goodness-of-fit statistics that help with determining the quality of the fitted models.
Finally, we have included some routines to assist with the post-analysis of MET models.
These include additional output for factor analytic (FA) structures with the generation of
genotype-specific plots to assess GxE. In addition, for ranking and selection of genotypes
across environments there are routines to calculate stability coefficients and to display biplots.
The routines considered here incorporate the latest developments and implementation
of MET analyses based on extensive and proven statistical research and practical
experience. Our intent is to facilitate the implementation and use of these technologies in
a straightforward and efficient manner for plant breeding programs of any size. We aim
to simplify the configuration of linear mixed models (LMMs) within ASReml-R to be more
intuitive and to provide semi-automatic routines with a sound analytical workflow.
In this manual, we will present some of the structure of ASRtriala illustrating its use with
examples using datasets provided in this package. ASRtriala is a tool that is provided ‘as is,’
but we have made all efforts to check our routines carefully and we have used real, publicly
available datasets.
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1 Getting Started

ASRtriala is an R package available for Linux, Windows and Mac OS that can be obtained
for free from https://vsni.co.uk/free-software/asrtriala
First, download the appropriate version of ASRtriala for your operating system.

• For Windows, the download will be a .zip file.
• For Linux, the download will be a .tgz file.
• For Mac, the download will be a .tar.gz file.

Then, before installing ASRtriala you will need to install the following packages:

• plyr
• ggplot2
• MASS
• mice

These are available for installation from the CRAN website https://cran.r-project.org/.
To install ASRtriala you can use one of the following commands as appropriate for your
operating system.
For Windows:

install.packages(path, repos = NULL, type = "win.binary")

For Linux:

install.packages(path, repos = NULL)

For Mac:

install.packages(path, repos = NULL, type = "source")

where path is the location and name of the appropriate file for your operating system to
install, for example: "/home/<username>/ASRtriala1.0.0.zip".
Another option is to install ASRtriala directly from RStudio by first going to the menu:
>Tools/Install Packages..., in the Install From field select
"Package Archive File (.zip; .tgz; tar.gz)"

and then you will have to search for the location of the file on your computer and select it.
Finally, you just need to click on Install, and once installed, load the library using the
command:
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library(ASRtriala)

Now you are ready to use it! A good way to get started is to request help directly from this
library. For example, you can type:

help(ASRtriala)

This will show a complete description of the functions and the datasets used in this package
by directly accessing the help pages available in R.
Once ASRtriala is loaded, you can also access the datasets by using the data() function,
for example:

pheno.wheat <- ASRtriala::pheno.wheat

In the next section we will describe in detail the analytical pipeline or workflow to perform
two-stage MET analyses. This will combine the use of the majority of the functions provided
within ASRtriala. Later in the other sections, we will show how to prepare and run these
analyses for a case based on real breeding data.
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2 Analytical Flow with ASRtriala

Multi-environmental trial (MET) analyses are probably one of the most important aspects to
evaluate in plant breeding. Here, groups of genotypes are evaluated in several environments
(sites, years, and/or treatments) and their performance is assessed across these environments.
Any lack of stability found in this performance is known as genotype-by-environment (GxE)
interaction and it is due to differential responses of a genotype to the particular conditions
found in a given environment.
Analyses of MET studies can be complex as there are computational and modelling
challenges. It is possible to perform a single-stage analysis combining all available
sites/trials into a unique linear mixed model (LMM); however, this is often difficult as each
individual trial might differ in its design structure, genotypes considered, and they might
also have specific site conditions that require carefull modelling. In addition, when fitting a
complex LMM, the large number of variance components to estimate simultaneously makes
convergency difficult or sometimes impossible.
Alternatively, it is possible to perform a two-stage analysis. Here, the process is divided
into two steps. During step 1, the focus is on each individual trial where all efforts are aimed
at fitting the best possible model considering spatial and/or non-spatial adjustments as part
of the modelling process. After the best model is fitted, predictions (or adjusted means) are
obtained together with their statistical weights. For step 2, predictions from individual trial
analyses are all combined to fit a MET model that considers complex variance-covariance
structures to model GxE.
The separation of the analyses into these two steps facilitates the process by focusing on
each of the parts individually. There is some loss of information between the single- and
two-stage process, but this is minimized by the appropriate use of weights and by enabling
complex models to be fitted, rather than a simplified model which is often required to make
fitting a single-stage model possible.
One very important advantage of the implementation of a two-step analysis for breeding
programs is the possibility of implementing a more operational analytical pipeline. Here,
each individual trial is analyzed as their raw data is available, and complex statistical tools
(namely spatial analyses) are considered the norm. Predictions (or adjusted means) and
weights obtained during this process can be stored and managed in a database system for
later use. For example, it might be required to use a portion of the trials, or even a portion of
the genotypes, in a MET analysis for a given region. This task will be easier and quicker to
do in this simplified set. Additionally, any of these predictions can be used, for example, to
develop Genomic Prediction (GP) models or discovery of SNPs via Genome-Wide Association
Studies (GWAS). This has the advantage of not requiring to re-visit (or re-fit) each trial
again, only to retrieve their information from the database system.
The general workflow of the above two-step process is presented in the following figures. And
in the next section, we will start by illustrating the fitting of single-trial models.
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3 Single-site Analyses

Statistical evaluation of a single-trial is relatively straightforward especially when good
experimental design principles have been implemented requiring only the incorporation of
all relevant design terms (e.g,. incomplete blocks) into the fitted model. However, with
the availability of spatial analyses, it is possible to improve the statistical accuracy of the
treatment (or genotype) mean estimates by explicitly modelling the spatial heterogeneity of
a trial. Several approaches exists, including the definition of design model terms (such as
random row and columns effects), modelling of trends (e.g., polynomials or cubic smoothing
splines), or by specifying autocorrelation among residuals, as with the use of the first order
autorregressive (AR1) error structure. There are several manuscripts that describe some of
these tools, a good introductory reference with several cases is Gezan et al. (2010).
ASRtriala incorporates a workflow to fit a single-trial analysis that can select the best
possible model, therefore achieving good accuracies on the genotype mean predictions. We
use the term best in italics as it is not possible to fit all possible models, and here we only
fit a predefined set of models for which we select what we consider the best according to a
goodness-of-fit statistic of choice.
The workflow for this section, that assumes we have a dataset from a unique trial, is described
in the following tasks:

• Preparing and auditing data.
• Selecting the best model.
• Fitting final selected best model.
• Extracting and interpreting relevant output.

3.1 Preparing and Auditing data

To illustrate the flow of functions and show some of the capabilities of ASRtriala we are
going to use a dataset from wheat published by Belamkar et al. (2018). This corresponds to
raw data on eight locations, where the response variable is yield (recorded in bushels/acre).
Some of the trials have two replicates, but most have a single replication, but all have
incomplete blocks. In relation to the genotypes there is a total of three checks and 270 test
lines. Most of the lines are present in all locations.
Below we call this dataset, and then we filter it to only have a single location (in this case
Alliance) for which we show the first six rows of data.

pheno.wheat <- ASRtriala::pheno.wheat
st.data <- pheno.wheat[pheno.wheat$location == "Alliance",

]
head(st.data)
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## location rep ibk check gen col row yield
## 1 Alliance 1 1 1 Camelot 1 16 71.4
## 2 Alliance 1 1 0 NE16471 1 17 56.5
## 3 Alliance 1 1 0 NE16510 1 18 50.8
## 4 Alliance 1 1 0 NE16516 1 19 49.8
## 5 Alliance 1 1 0 NE16570 1 20 52.2
## 6 Alliance 1 1 0 NE16650 1 21 42.0

For ASRtriala, the names of columns are totally flexible; however, there are a couple of
important considerations to follow:

• The column check should have only two levels (or values): 0 for test lines, and 1 for
checks/controls. This column is only relevant if later it is of interest to separate the
estimation of the effects of the checks (as fixed effects) from the test lines (as random
effects). If both sets are assumed fixed or random, this column is not required.

• The columns col and row correspond to the coordinates of the experimental units
(e.g., plots). These positions should identify a unique unit, and are required for spatial
analyses.

• For spatial analyses ASReml-R requires that the trial described by the positions is
continuous, therefore data is assumed to come in a full and complete grid. If this is not
the case then the function fill.grid() included within ASRtriala should be used.
Further details are found in the help associated with this function.

The data frame st.data does comply with the previous considerations, and therefore we
can proceed with the following step of auditing the trial. Here, we use the function
audit.single() that will evaluate and verify the integrity and quality of the data for single
field trials using simple exploratory data analyses tools; this is shown below:

audit <- audit.single(data = st.data, gen = "gen", check = "check",
row = "row", col = "col", ibk = "ibk", rep = "rep",
resp = "yield", type.label = "none")

Here we have specified all relevant columns from the data frame of interest, and now we can
explore some of the output.

audit$trial.stats

## n min mean max sd missing CVp
## 1 597 21.1 58.955 94.5 11.08 3 18.794

audit$rep.stats

## rep n min mean max sd missing CVp
## 1 1 300 21.1 55.128 83.1 9.7266 0 17.644
## 2 2 297 28.8 62.822 94.5 11.0357 3 17.567

ASRtriala Page 9



User’s Manual

audit$check.inc

## rep
## check 1 2
## 0 270 267
## 1 30 30

audit$trial.plot

This function generates several tables that are relevant, but of special interest are the tables
$trial.stats and $rep.stats that shows some summary statistics for the complete trial
and by replicate, respectively. This is useful, for example, to identify replicates with an
unusual level of variability.
Also important is the matrix with the incidence of checks and test treatments by replication
check.inc which is obtained only considering non-NA observations. This matrix helps to
assess the potential unbalanced representation of genotypes across replicates found on the
trial. We can see that only three genotypes are missing on replicate 2, a fact that is not of
much concern.
The statistics of the current trial have reasonable variability, and we can, as a final step,
display the field layout. Here, missing values on the response variable are represented in
grey. This plot can also help to visually identify some spatial trends or unexpected patterns.
In this case, it seems that the top half of the trial has better yield than the bottom half.
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3.2 Fitting a user-defined single-trial model

Before we proceed to find the best single-trial model from an array of pre-defined models we
will fit one simple model for the current data from the location Alliance. Recall that this
site has two replicates and several incomplete blocks within replicate, and, for this particular
example, we are interested in separating the checks (or controls) as fixed effects from the
test lines that will be treated as random effects. In order to do this we will use the function
fit.single().

mT1 <- fit.single(data = st.data, gen = "gen", check = "check",
rep = "rep", ibk = "ibk", row = "row", col = "col",
resp = "yield", type.gen = "random", type.rep = "fixed",
add.rep = TRUE, add.ibk = TRUE, type.residual = "ar1.rowcol",
add.nugget = FALSE, threshold = 3.5)

There are several things happening in this function. It will internally call ASReml-R and
it will extract and generate all relevant output. In addition, it will provide goodness-of-fit
statistics together with suggested outliers, both of which can be used to assess the quality
of the fitted model.
The first argument specifies the dataset, and the arguments following this identify the
different elements of the model. The column names for the genotypes and response must be
supplied. Other optional column names that can be supplied are for checks, replicates and
incomplete blocks. If spatial coordinates are available, these are provided as the numerical
values in row and columns. In the above code, we have specified genotype as random
with type.gen = "random" and replicate as fixed with type.rep = "fixed". Note that
checks, if included, will be always assumed to be fixed for this function. The arguments
add.rep = TRUE and add.ibk = TRUE are critical to indicate that these terms, if defined,
should be included in the model, otherwise they are ignored.
The function fit.single() allows for fitting of different error structures, these are: indep,
ar1.row, ar1.col, and ar1.rowcol, corresponding to independent residuals, and first order
autocorrelation in row, columns and both, respectively. In this example we have selected the
most complex option ar1.rowcol, which was specified without a nugget (or microsite error)
random effect. Finally, we have the argument threshold that will flag for suggested outliers
based on standardized residuals; in this case anything larger than 3.5 will be identified and
presented in an output data frame. These residuals are approximations estimated internally
by ASReml-R given that we are dealing with LMMs and should be used with care.
Let’s look at some of the output from the fitting of the above model. The first thing is to
check if the model has fitted successfully. For this, we check the output in mT1$warnings
that in this case is NA; hence, we can move to explore the model call using:
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mT1$call

## asreml::asreml(fixed = yield ~ 1 + rep + at(check, "1"):gen,
## random = ~rep:ibk + at(check, "0"):gen, residual = ~ar1(row):ar1v(col),
## data = data, na.action = list(x = "include", y = "include"))

For users familiar with ASReml-R it is possible to identify each of the elements considered in
the specification of the LMM. It is possible to use this call to fit the model directly with
ASReml-R (and perform modifications if desired); however, note that the data frame referred
here, data, needs to be replaced by your dataset.
The full asreml class object generated by fitting the single-trial model can be found under
$mod. For example, we can request the variance component estimates and the residual plots
using:

summary(mT1$mod)$varcomp

## component std.error z.ratio bound %ch
## rep:ibk 0.96846 1.661305 0.58295 P 0.1
## at(check, 0):gen 68.51777 6.885433 9.95112 P 0.0
## row:col!R 1.00000 NA NA F 0.0
## row:col!row!cor 0.46699 0.057287 8.15167 U 0.0
## row:col!col!cor 0.26207 0.061640 4.25172 U 0.0
## row:col!col!var 30.52979 3.001035 10.17309 P 0.0

plot(mT1$mod)
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The above output indicates that we have interesting, and possible significant, spatial
correlations in both rows and columns.
Before exploring additional output, we should check what we have under $outliers. For
the fitted model, there is nothing reported (indicated as NA, not shown), and this seems to
agree with our residuals plot from above (which shows simple residuals not standardized
residuals). If there were some suggested outliers, these will be identified with the number of
their corresponding data row in the original data frame. Further evaluation of these outliers
is required, and eventually these observations will need to be examined carefully directly
from the data frame.
There are two other important elements from the output, these correspond to the
goodness-of-fit statistics and the Wald statistics (or approximated ANOVA table in the
context of LMM).

mT1$gof.stats
mT1$aov

## n.vc logL AIC BIC Aopt logDopt h2.vc h2.pev
## 1 5 -1511.6 3033.1 3055.1 9.4496 578.83 0.68507 0.8623

## Df denDF F.inc Pr
## (Intercept) 1 47.8 9949.00 1.0399e-52
## rep 1 16.7 50.38 2.4137e-06
## at(check, 1):gen 3 359.4 125.90 9.5818e-56

Several interesting goodness-of-fit statistics are presented. The most common ones are logL,
AIC and BIC. These can be used only to compare models that have the same fixed effect
model terms. The statistic logL can be used to perform some likelihood ratio tests (LRT)
using the ASReml-R function lrt.asreml(). We have included the A and D optimality
measures, corresponding to Aopt and logDopt, with the latter one expressed in a logarithm
form. Both use the variance-covariance matrix of the prediction errors. The A-optimality
value is defined as the average of the diagonal of this matrix, and therefore a lower value is
associated with narrower confidence intervals of the genotype predictions. The D-optimality
uses the determinant of the same matrix, and therefore a lower value represents a smaller
volume of the hypersphere defined by the variance-covariance matrix of the prediction errors.
Finally, we have included some standard definitions of heritability that are only reported
when genotype is assumed to be a random effect. Here, h2.vc is the heritability obtained as
the ratio of the genetic variance component over the sum of all variance components (except
correlations). A definition commonly used to compare spatial models is h2.pev, that uses
the uses the predictor error variances (PEVs) from the BLUP values associated with each of
the genotypes, its expression is: h2

pev = 1− ¯PEV /σg
2, where ¯PEV is the PEVs mean and σg

2

is the genetic variance. For ASRtriala if checks are assumed fixed and test lines as random
in the model, Aopt, logDopt and h2.pev only use the test genotypes for its calculations.
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The Wald statistics reported were obtained by considering the calculation of denominator
degrees of freedom using the algebraic calculations and by reporting the incremental (or
sequential) sum of squares.
Finally, the additional output from this object is a data frame with the predictions of the
genotypes for the fitted model with its corresponding weights. A few rows of this data frame
are shown below:

head(as.data.frame(mT1$predictions), 10)

## check gen predicted.value std.error status weight
## 1 1 Camelot 64.082 1.1287 Estimable NA
## 2 1 Freeman 79.075 1.1200 Estimable NA
## 3 1 GOODSTREAK 54.790 1.1354 Estimable NA
## 4 0 NE16401 61.801 3.0156 Estimable 0.13100
## 5 0 NE16402 71.016 3.0557 Estimable 0.13143
## 6 0 NE16403 56.209 3.0480 Estimable 0.13130
## 7 0 NE16404 53.541 3.0509 Estimable 0.13153
## 8 0 NE16405 57.505 3.0690 Estimable 0.12292
## 9 0 NE16406 66.729 3.1273 Estimable 0.12080
## 10 0 NE16407 45.167 3.0570 Estimable 0.13148

This data frame of predictions identifies in the column check the different types of genotypes
(0 for check/controls and 1 for test lines). In addition, standard errors and weights are
included. The latter are not available for the checks as these were treated as fixed effects.
Further details of these weights will be presented later as part of the step 2 of the two-stage
MET analyses.
The above example fitted a model that considered the trial’s design structure together with
an autorregressive error structure on both rows and columns. However, there are additional
modelling options that can be used under the function fit.single(). For example, it is
possible to include one or more covariates, if required, or add random effects of row and/or
column within replicate by using the arguments add.row and add.col. Alternatively, spatial
trends, in the form of polynomials of first and second order or cubic smoothing splines, can
be included using the arguments trend.row and trend.col.

3.3 Selecting the best single-trial model

The above evaluation and fitting process can be repeated on an array of different model
specifications where goodness-of-fit statistics can be extracted and used to select the
best model for a single site. This process is facilitated in ASRtriala with the function
select.single(). This function allows the evaluation of several spatial and non-spatial
single-trial models using the same base input. All of the model specifications described
above for the function fit.single() are available. The key of this procedure is the
use of the data frame model.setup, which has a collection of 640 predefined spatial and
non-spatial models with specifications (or configurations) to be used. The first and last
rows of this data frame are shown below.
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model.setup <- ASRtriala::model.setup
head(model.setup)
tail(model.setup)

## model add.rep add.ibk add.row add.col
## 1 Model_0001 FALSE FALSE FALSE FALSE
## 2 Model_0002 FALSE FALSE FALSE TRUE
## 3 Model_0003 FALSE FALSE TRUE FALSE
## 4 Model_0004 FALSE FALSE TRUE TRUE
## 5 Model_0005 FALSE FALSE TRUE TRUE
## 6 Model_0006 FALSE TRUE FALSE FALSE
## trend.row trend.col type.residual add.nugget
## 1 none none indep FALSE
## 2 none none indep FALSE
## 3 none none indep FALSE
## 4 none none ar1.rowcol FALSE
## 5 none none indep FALSE
## 6 none none indep FALSE

## model add.rep add.ibk add.row add.col
## 635 Model_0635 TRUE TRUE TRUE TRUE
## 636 Model_0636 TRUE TRUE TRUE TRUE
## 637 Model_0637 TRUE TRUE TRUE TRUE
## 638 Model_0638 TRUE TRUE TRUE TRUE
## 639 Model_0639 TRUE TRUE TRUE TRUE
## 640 Model_0640 TRUE TRUE TRUE TRUE
## trend.row trend.col type.residual add.nugget
## 635 spline spline ar1.col TRUE
## 636 spline spline ar1.row FALSE
## 637 spline spline ar1.row TRUE
## 638 spline spline ar1.rowcol FALSE
## 639 spline spline ar1.rowcol TRUE
## 640 spline spline indep FALSE

The above data frame contains several columns with the required specifications for each of the
models. This is a large number of models but not all of the 640 models are always required.
For example, if a trial does not contain incomplete blocks (i.e., add.ibk = FALSE), then only
a subset of these models needs to be considered. For this, the function select.single()
will automatically select the corresponding subset according to which design factors are
included. It is also important to respect the original design, for example, if a trial does
include replicates, then these should be always present (i.e., add.rep = TRUE).
Nevertheless, further reductions of this set might still be required. For example, in some
experiments (e.g., unreplicated trials) not all model terms are appropriate to be considered
(such as row and/or columns within replicate). In order to do this, filtering or subsetting
the data frame model.setup before being supplied to the function select.single() is
necessary. In the following commands we will select a subset of models, specifically the ones
that always include replicate effect and without any form of trend or nugget.
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specs.single <- model.setup[model.setup$add.rep == TRUE &
model.setup$trend.row == "none" & model.setup$trend.col ==
"none" & model.setup$add.nugget == FALSE, ]

Now we can proceed to use the main function to fit these 14 models. Note that this subset
of models are assigned using the argument data.model = specs.single.

models.stats <- select.single(data = st.data, gen = "gen",
check = "check", rep = "rep", ibk = "ibk", row = "row",
col = "col", resp = "yield", type.gen = "random",
data.model = specs.single, threshold = 3.5, criteria = NULL)

Before we look at the goodness-of-fit statistics, it is important to check the output related
to $warnings and $outliers. The warnings will report if there were some issues on fitting
any of these 14 models, and the outliers will report a list with potential outliers per model
fit, which is relevant to assess their quality. These tables are not shown here.
The most important part of the output from this function is the goodness-of-fit statistics
shown below. If you note some rows filled with NA values, this will indicate that some models
failed to converge. Often the reason is associated with an overparametrization and, in most
cases this should not be of concern. All of these statistics were previously described, and
they should help to rank and select the best model fit. Recall that models with different
sets of fixed effects should not be compared using logL, AIC or BIC. In this particular case,
using the criteria Aopt or logDopt the best model appears to be Model_0014, which does
not include incomplete blocks but it does have the random effects of row and column and
an autorregressive error structure on both rows and columns.

models.stats$gof.stats

## model n.vc logL AIC BIC Aopt logDopt h2.vc h2.pev
## 1 Model_0011 2 -1545.2 3094.5 3103.2 12.5489 682.48 0.69144 0.81314
## 2 Model_0012 3 -1534.0 3074.0 3087.1 11.6662 659.01 0.69016 0.82669
## 3 Model_0013 3 -1533.9 3073.8 3087.0 11.8379 662.29 0.69039 0.82745
## 4 Model_0014 6 -1508.1 3028.3 3054.6 9.4286 578.66 0.68975 0.86402
## 5 Model_0015 4 -1515.9 3039.9 3057.4 10.4276 619.48 0.68897 0.85115
## 6 Model_0016 3 -1529.8 3065.5 3078.7 11.5598 654.96 0.69441 0.83366
## 7 Model_0017 4 -1529.1 3066.2 3083.7 11.5196 653.69 0.69275 0.83320
## 8 Model_0018 4 -1512.9 3033.9 3051.4 10.5074 620.37 0.69386 0.85482
## 9 Model_0019 7 -1505.7 3025.4 3056.1 9.7102 590.10 0.69094 0.86300
## 10 Model_0020 5 -1510.8 3031.6 3053.6 10.3430 614.53 0.69099 0.85625
## 11 Model_0411 5 -1515.2 3040.5 3062.4 10.3506 616.38 0.68938 0.85253
## 12 Model_0413 5 -1510.3 3030.6 3052.5 9.7270 592.08 0.68833 0.85958
## 13 Model_0566 6 -1510.6 3033.2 3059.5 10.3040 613.02 0.69029 0.85683
## 14 Model_0568 6 -1506.1 3024.1 3050.4 9.7847 593.08 0.69128 0.86223
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## add.rep add.ibk add.row add.col trend.row trend.col type.residual add.nugget
## 1 TRUE FALSE FALSE FALSE none none indep FALSE
## 2 TRUE FALSE FALSE TRUE none none indep FALSE
## 3 TRUE FALSE TRUE FALSE none none indep FALSE
## 4 TRUE FALSE TRUE TRUE none none ar1.rowcol FALSE
## 5 TRUE FALSE TRUE TRUE none none indep FALSE
## 6 TRUE TRUE FALSE FALSE none none indep FALSE
## 7 TRUE TRUE FALSE TRUE none none indep FALSE
## 8 TRUE TRUE TRUE FALSE none none indep FALSE
## 9 TRUE TRUE TRUE TRUE none none ar1.rowcol FALSE
## 10 TRUE TRUE TRUE TRUE none none indep FALSE
## 11 TRUE FALSE TRUE TRUE none none ar1.col FALSE
## 12 TRUE FALSE TRUE TRUE none none ar1.row FALSE
## 13 TRUE TRUE TRUE TRUE none none ar1.col FALSE
## 14 TRUE TRUE TRUE TRUE none none ar1.row FALSE

3.4 Fitting final selected best model.

Now we are ready to proceed to fit the selected model Model_0014 using the following lines
of code:

sel.m <- models.stats$gof.stats[4, ]
mT1.f <- fit.single(data = st.data, data.model = sel.m,

threshold = 3.5)

The above way is more automatic. Alternatively we can fit the same model in a more detailed
way using:

sel.m <- models.stats$gof.stats[4, ]
mT1.f <- fit.single(data = st.data, gen = "gen", check = "check",

rep = "rep", ibk = "ibk", row = "row", col = "col",
resp = "yield", type.gen = "random", type.rep = "fixed",
add.rep = sel.m$add.rep, add.ibk = sel.m$add.ibk,
add.row = sel.m$add.row, add.col = sel.m$add.col,
trend.row = sel.m$trend.row, trend.col = sel.m$trend.col,
type.residual = sel.m$type.residual, add.nugget = sel.m$add.nugget,
threshold = 3.5)

In both of the above cases, we have used the setting/configuration for Model_0014 by filtering
row four on the table $gof.stats, and using that information directly into the fit.single()
function, but the former is using the convenient argument data.model referring to the
meta-data of the selected model. As done before, we can take a look at all output, but
in this case we will present only the variance component estimates and a few of the lines of
predictions.
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summary(mT1.f$mod)$varcomp
head(as.data.frame(mT1.f$predictions))

## component std.error z.ratio bound %ch
## rep:row 3.30774 1.726214 1.91618 P 0.1
## rep:col 1.47740 1.895125 0.77958 P 0.3
## at(check, 0):gen 68.72016 6.890146 9.97369 P 0.0
## row:col!R 1.00000 NA NA F 0.0
## row:col!row!cor 0.42743 0.068949 6.19920 U 0.1
## row:col!col!cor 0.18089 0.070847 2.55327 U 0.1
## row:col!col!var 26.12490 2.991930 8.73179 P 0.0

## check gen predicted.value std.error status weight
## 1 1 Camelot 63.929 1.1539 Estimable NA
## 2 1 Freeman 79.334 1.1520 Estimable NA
## 3 1 GOODSTREAK 54.933 1.1552 Estimable NA
## 4 0 NE16401 61.644 3.0229 Estimable 0.12969
## 5 0 NE16402 71.450 3.0446 Estimable 0.13010
## 6 0 NE16403 56.159 3.0437 Estimable 0.13003

A few differences can be noted from our previous model fit for the same data, but this is
expected as we are using what we consider the best model. Now it is possible to use the
relevant output to draw our conclusions and perform breeding decisions as required.
If several trials need to be analyzed, a similar procedure as the one executed above can be
repeated. If these single-site analyses need to be combined into a MET analyses, then there
are some aspects to take into consideration, which will be the focus in the next section.
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4 Multi-Environmental Trial Analyses

One of the main objectives of ASRtriala is to perform MET analyses in an easy and efficient
manner. In this package, we focus on the implementation of two-stage analyses as proposed
by Smith et al. (2001a). Here, the first step is to collect the information from each of the
single-trial analyses with their corresponding weights, and the second step focuses on fitting
complex variance-covariance structures to model GxE as nested effects.
The workflow for MET analyses based on this two-stage procedure involves the following
tasks:

• Collecting pre-processed data (predictions) from single-trial analyses.
• Preparing and auditing MET data.
• Selecting the best MET model.
• Fitting final selected best MET model.
• Enhancing output (e.g., biplots, stability indexes).
• Extracting and interpreting relevant output.

4.1 Collecting predictions from single-trial analyses

All procedures described in the previous sections about fitting and selecting the best model
for spatial or non-spatial analysis on each of the trials applies to this part. In terms of
workflow, the process involving single-trial analyses is assumed to have occurred earlier, and
possibly a database system that manages and stores these analyses is available. Hence, in
this step, we collect the relevant trials (for example, if the interest is on a range of years for
a specific breeding zone), and relevant genotypes tested on these trials (often all genotypes
but it could be a subset according to specific objectives or good representation).
In any case, for each of the trials it is required to have the mean genotype predictions
with their corresponding weights. ASRtriala follows the procedure proposed by Smith
et al. (2001a) and with additional details presented by Gogel et al. (2018). The logic
is based on mimicking a single-stage MET analysis as much as possible, where first the
predictions from the single-trial analyses are based on variance components estimated with
genotypes considered as random effects (as would be done in a single-stage MET analysis) but
avoiding the shrinkage that occurs on BLUP values. This is achieved by fitting the single-site
model first with genotype as a random effect, and then fixing all variance components into
a re-fitting of the same model, but this time with the genotypes considered as fixed effects.
This will be illustrated later in a detailed example.
The second aspect is to obtain weights for each of the predictions to be included into a
weighted linear mixed model analysis for the MET model. Here, the weights correspond
to the diagonal of the inverse of the variance-covariance matrix of the prediction errors. This
concept approximates the inverse of the mixed model equations that will be obtained under
a single-stage MET analysis.
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Earlier, we fitted our best model for location Alliance and this was stored in the
object mT1.f. We will use the same arguments but this time the additional argument
fix.vc = TRUE and store the output in the object mT1.r:

mT1.r <- fit.single(data = st.data, data.model = sel.m,
fix.vc = TRUE, threshold = 3.5)

The argument fix.vc = TRUE will first fit genotype as random (as specified under
type.gen = "random"), and then as fixed to obtain un-shrunken predictions. An important
warning about the output from the the latter object, mT1.r, is that its goodness-of-fit
statistics are based on the model with both checks and test lines are treated as a single
fixed effect model term.
Some of the relevant output from this model is:

ls(mT1.r)
summary(mT1.r$mod)$varcomp
head(as.data.frame(mT1.r$predictions))

## [1] "aov" "call" "gof.stats" "mod" "outliers"
## [6] "predictions" "vc.table" "warnings"

## component std.error z.ratio bound %ch
## rep:row 3.30774 NA NA F 0
## rep:col 1.47740 NA NA F 0
## row:col!R 1.00000 NA NA F 0
## row:col!row!cor 0.42743 NA NA F 0
## row:col!col!cor 0.18089 NA NA F 0
## row:col!col!var 26.12490 NA NA F 0

## check gen predicted.value std.error status weight
## 1 1 Camelot 63.887 1.1659 Estimable 1.10413
## 2 1 Freeman 79.619 1.1653 Estimable 1.12409
## 3 1 GOODSTREAK 54.567 1.1680 Estimable 1.10690
## 4 0 NE16401 62.667 3.2765 Estimable 0.11559
## 5 0 NE16402 73.800 3.3087 Estimable 0.11561
## 6 0 NE16403 55.822 3.3054 Estimable 0.11561

First, we have the same list of objects as before, and again it is important to verify the model
fit with $warnings and $outliers. Then, as expected, the variance components are the
same as in the previous model fit mT1.f, but you will notice that the predictions are slightly
different and also with slightly different weights. An interesting difference here is that both
checks and test genotypes all have weights.
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4.2 Preparing and auditing MET data.

To illustrate the implementation of the two-stage analysis within ASRtriala we are going to
continue using the study from wheat (Belamkar et al. 2018) presented before. However, in
this case we will use the predictions of those eight locations based on fitting and selecting,
individually in each trial the best model as shown earlier. This has already been done, and
the model results collected in a data frame, for which we show only the first six rows of data
together with a simple enumeration of all levels for the factor location.

data.wheat.preds <- ASRtriala::pheno.wheat.preds
head(data.wheat.preds)

## location check gen predicted.value std.error status weight
## 1 Alliance 1 Camelot 66.718 1.4601 Estimable 1.06040
## 2 Alliance 1 Freeman 82.237 1.4400 Estimable 1.06634
## 3 Alliance 1 GOODSTREAK 57.315 1.4924 Estimable 1.05411
## 4 Alliance 0 NE16401 65.637 3.3369 Estimable 0.10842
## 5 Alliance 0 NE16402 75.964 3.3544 Estimable 0.10919
## 6 Alliance 0 NE16403 58.878 3.3147 Estimable 0.10907

levels(data.wheat.preds$location)

## [1] "Alliance" "Clay_Center" "Grant_D" "Lincoln" "Lincoln_IM"
## [6] "McCook" "North_Platte" "Sidney"

Now, we can proceed with some auditing of this predictions dataset. For this we use the
function audit.met() which provides a couple of important elements to assess the quality
of the data and if it will be adequate to use on downstream MET analyses. This is done
using the code below that requires the specification of the columns in the data frame where
trial, genotype and the response variable are found.

audit.all <- audit.met(data = data.wheat.preds, trial = "location",
gen = "gen", resp = "predicted.value")

The output from the above function is:

audit.all$met.stats
audit.all$gen.inc

## location n min mean max sd missing CVp
## 1 Alliance 273 28.647 61.133 82.237 9.0423 0 14.791
## 2 Clay_Center 273 10.904 37.243 72.208 10.1882 0 27.356
## 3 Grant_D 269 40.198 71.938 105.185 9.9343 4 13.810
## 4 Lincoln 273 20.400 54.700 80.209 11.0673 0 20.233
## 5 Lincoln_IM 272 31.700 79.757 121.779 13.0327 1 16.340
## 6 McCook 272 4.836 68.458 109.703 15.0114 1 21.928
## 7 North_Platte 273 33.646 65.816 92.421 11.2352 0 17.070
## 8 Sidney 273 22.758 56.806 84.375 11.0618 0 19.473
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##
## Alliance Clay_Center Grant_D Lincoln Lincoln_IM McCook North_Platte Sidney
## Alliance 273 273 269 273 272 272 273 273
## Clay_Center 273 273 269 273 272 272 273 273
## Grant_D 269 269 269 269 268 268 269 269
## Lincoln 273 273 269 273 272 272 273 273
## Lincoln_IM 272 272 268 272 272 271 272 272
## McCook 272 272 268 272 271 272 272 272
## North_Platte 273 273 269 273 272 272 273 273
## Sidney 273 273 269 273 272 272 273 273

The first element is a data frame with the summary statistics by trial or location. This is
relevant to assess the quality of the phenotypic response. However, note that these statistics
are based on model predictions (or adjusted means) and therefore they present less variability
than the raw observations. Here, we can for example check for unusual overall means on
some locations, or large numbers of missing values. In this example, the column CVp, that
corresponds to the coefficient of variation, shows for location Clay_Center a value of 27.4%
which is an indication of large background noise. Also this location has the lowest mean
value.
The other element reported is a matrix of incidence of genotypes by trials. This is critical
to assess the level of connectivity between trials. In this particular case, values in the
off-diagonal represent the common genotypes between locations, all of these numbers are
268 or larger (note that this function does not count those observations on the response
variable that are NA). The values on the diagonal are the count of non-NA observations by
location. This matrix indicates a very good connectivity between locations, enabling us
to estimate genetic correlations between trials with sufficient information. In general, we
recommend that a minimum of 5 genotypes should be common between any pair of trials.

4.3 Selecting the best MET model.

In a similar way as done with the single-trial analysis flow, we are in a position to fit
different MET structures to select the best model. For this task we will use the function
select.met(). In contrast with the function select.single(), this function is simpler
with a limited set of options, as most of the design terms have been considered in the first
step.
For our MET dataset the code to use is:

met.stats <- select.met(data = data.wheat.preds, trial = "location",
gen = "gen", resp = "predicted.value", weight = "weight",
type.trial = "fixed", vc.models = c("corv", "corh",

"fa1", "fa2", "fa3", "fa4"), criteria = "AIC")

In the above code, besides the required specification of the columns from our data frame
(including weights), we have indicated that we want the trial effect to be fixed. Also there
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is a total of six complex GxE nested models that we want to evaluate, these are: a common
correlation and variance (corv), a common correlation but with heterogeneous variances
(corh), and four factor analytic models (fa1 to fa4). Descriptions of these models can be
found in the ASReml-R manual, and statistical details on the factor analytic (FA) model can
be found in Smith et al. (2001b). Finally, we have specified that the criteria to identify the
best model is based on AIC.
It is important to note that both select.met() and fit.met() functions will eliminate
from the data frame supplied any observation (prediction) that has no weight (i.e., NA).
If an analysis is of interest for data with no available weights, it is recommended that a
vector of ones is used as weights. For the fa4 model there is a message associated with
being over-parametrized (not shown). This occurs when the FA structure has more variance
components than are required under an unstructured (or corgh) model structure. However,
ASReml-R will deal with this issue by fixing some components to zero.
The main output from the above function is the table of goodness-of-fit statistics, which is
shown below.

met.stats$gof.stats

## vc.models n.vc logL AIC BIC
## 6 fa4 33 -5981.9 12030 12217
## 5 fa3 29 -5987.2 12032 12197
## 4 fa2 22 -5997.8 12040 12165
## 1 corh 29 -5998.4 12055 12220
## 3 fa1 16 -6028.4 12089 12180
## 2 corv 2 -6098.2 12200 12212

The above table is sorted according to AIC, and indicates that model fa4 is the best model.
This result does not agree with the use of the more conservative BIC. Also, the difference
in log-likelihood values (logL between fa3 and fa4 is relatively small given the additional
four parameters. These two models can be compared formally with a likelihood ratio test
(LRT) using the ASReml-R function lrt.asreml(). In the above table there is no heritability
reported as there is no clear definition of this statistic when weights are incorporated into
the model fit.
There is additional output associated with the best model. It is important to check the
$best.warning in case the selected model has not fully converged or has any issues. For
this example, there are no issues (not shown). Another important output is the model call,
as shown below, that provides the confirmation of the definition of the MET model:

met.stats$best.call

## asreml::asreml(fixed = predicted.value ~ 1 + location, random = ~fa(location,
## 4):id(gen), data = data, na.action = list(x = "include",
## y = "include"), weights = weight, family = asreml::asr_gaussian(dispersion = 1),
## workspace = 1.28e+08)
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From the above ouput it is easy to identify which elements were considered in the selected
model. As indicated before, this call can be used to fit the model directly with ASReml-R.

4.4 Fitting final selected best MET model.

Now we are in a position to fit the final selected model fa4. This is shown in the following
code:

met.model.fa4 <- fit.met(data = data.wheat.preds, trial = "location",
gen = "gen", resp = "predicted.value", weight = "weight",
type.gen = "random", type.trial = "fixed", vc.model = "fa4")

The input for this function is almost identical to select.met(). The output from fitting
this model contains several elements, these are:

## [1] "call" "corr.g" "fa.loadings" "gof.stats" "mod"
## [6] "predictions" "vcov.g" "vcov.pred" "warnings"

We will present and describe in detail a few of these elements in the following sections. As
before, one of the most important reports to look at is the messages under $warnings,
which is NA in this case. As with fit.single() we can access the full asreml class
object or parts of it under $mod, for example with summary(met.model.fa4$mod)$varcomp.
The goodness-of-fit statistics, $gof.stats, provides the same results as the table from
select.met() but only for the fitted model.
Probably the most relevant output is the estimation of the type B genetic correlation,
corresponding to a matrix with the genetic correlation between locations, which is critical to
assess and study the patterns of genotype-by-environment interactions. This can be obtained
with:

met.model.fa4$corr.g

## Alliance Clay_Center Grant_D Lincoln
## Alliance 1.000 0.457 0.856 0.635
## Clay_Center 0.457 1.000 0.493 0.627
## Grant_D 0.856 0.493 1.000 0.666
## Lincoln 0.635 0.627 0.666 1.000
## Lincoln_IM 0.724 0.462 0.734 0.795
## McCook 0.475 0.156 0.595 0.306
## North_Platte 0.438 0.180 0.599 0.389
## Sidney 0.457 0.385 0.570 0.496
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## Lincoln_IM McCook North_Platte Sidney
## Alliance 0.724 0.475 0.438 0.457
## Clay_Center 0.462 0.156 0.180 0.385
## Grant_D 0.734 0.595 0.599 0.570
## Lincoln 0.795 0.306 0.389 0.496
## Lincoln_IM 1.000 0.381 0.310 0.339
## McCook 0.381 1.000 0.530 0.330
## North_Platte 0.310 0.530 1.000 0.438
## Sidney 0.339 0.330 0.438 1.000

Interestingly, for this example, all type B correlations are positive ranging from 0.156 to
0.856. In general, it is easier to visualize these correlations using a heatmap. We will
use the functions from library ASRgenomics (available at https://vsni.co.uk/free-software/
asrgenomics) as shown in the code below:

library(ASRgenomics)
ASRgenomics::kinship.heatmap(K = met.model.fa4$corr.g,

dendrogram = TRUE, dist.method = "canberra", row.label = TRUE,
col.label = TRUE)
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The above plot shows clustering of some locations that can be useful to verify or define
new breeding zones, or to identify some sites with problems. In this example the location
Clay_Center appears somehow separated from the other sites.
It is also possible to obtain the genetic variance-covariance matrix between locations, which
is included within the list $vcov.g. This matrix will be important for obtaining biplots, as
shown later.
We can proceed to see the loadings for each of the factors, which correspond to variance
components estimated by ASReml-R and they can be found under $fa.loadings.

met.model.fa4$fa.loadings

## FA1 FA2 FA3 FA4
## Alliance 7.4591 0.00000 0.0000 0.00000
## Clay_Center 5.0937 -4.68862 0.0000 0.00000
## Grant_D 7.8899 0.33312 1.5713 0.00000
## Lincoln 7.3556 -5.18506 -1.3120 4.43939
## Lincoln_IM 7.8676 -0.55089 -3.6830 2.44714
## McCook 6.7223 3.30239 3.2618 2.32268
## North_Platte 5.0262 1.71091 5.1911 4.10106
## Sidney 5.5359 -2.44554 3.6174 0.99827

However, to facilitate interpretation it is recommended to use some form of rotation, this
will be shown in the next section.
And finally, the most important result is the predictions based on the MET analysis using
the fa4 structure. This is obtained from $predictions. In the code below we only present
the results for the variety Freeman.

met.model.fa4$predictions[met.model.fa4$predictions$gen ==
"Freeman", ]

## location gen predicted.value std.error status extrap
## 2 Alliance Freeman 81.922 0.94647 Estimable FALSE
## 275 Clay_Center Freeman 45.342 0.88876 Estimable FALSE
## 548 Grant_D Freeman 87.910 1.59695 Estimable FALSE
## 821 Lincoln Freeman 68.734 1.42379 Estimable FALSE
## 1094 Lincoln_IM Freeman 98.328 2.44535 Estimable FALSE
## 1367 McCook Freeman 93.007 2.59150 Estimable FALSE
## 1640 North_Platte Freeman 81.416 1.55919 Estimable FALSE
## 1913 Sidney Freeman 74.637 0.91991 Estimable FALSE

This is very important output as it provides the expected performance of the genotype of
interest in each of the locations. For most GxE structures (except for diag), ASReml-R
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will calculate predictions for each genotype in each location, even on those locations where
they are not present. This is facilitated by having a matrix of type B genetic correlation
estimates; however, this means that some genotype estimates are extrapolations based on
the other sites. For this reason, ASRtriala includes in the prediction table, as shown above,
an additional column called extrap that identifies those predictions on which a genotype
was not present on a given site.
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5 Enhancing output from MET models.

In this section we will present a few additional functions from ASRtriala that can be useful
to make the most of your results from the MET analyses.

5.1 Obtaining a Biplot

First we will start by generating a biplot, which is a type of scatterplot that is useful
to display multivariate data. For example, in the context of predictions from a MET
analysis, where the trials or locations correspond to the vectors and the genotypes to
the units. The function gbiplot() can be used within ASRtriala for this purpose. The
input corresponds to a data frame with the predictions by genotype and location (as
with met.model.fa4$predictions), and from here a variance-covariance (or correlation)
matrix between locations is calculated. However, it is recommended to use the actual
variance-covariance matrix estimated from the MET analysis (i.e., $vcov.g).
In the example below we use the predictions from the model fit object met.model.fa4, and
we provide the $vcov.g directly from there. Also, other arguments have been used to help
display the data.

gbiplot(data = met.model.fa4$predictions, pcs = c(1,
2), vector = "location", unit = "gen", resp = "predicted.value",
vcov.g = met.model.fa4$vcov.g, scale = FALSE, vector.label = TRUE,
unit.label = FALSE)
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In the above graphical display it is clear that all vectors (in this case locations) are pointing
more or less to the same direction (center left), and their angles are relatively small indicating
high levels of correlation between the vectors (i.e., locations).
Biplots can be used to facilitate the identification of the best genotypes. For example, in
the above plot, the four genotypes located on the extreme left are all outstanding genotypes
performing consistently, across all locations, some of the highest predicted values, with the
variety Freeman corresponding to the one farthest to the left. However, note that the two
dimensions presented in the above biplot correspond to ~71% of the total variability; hence,
some information is lost in this representation.
This function also allows for adding the labels to the units (i.e., genotypes) or to show
different pairs of principal components (e.g., PC1 vs. PC3). In addition, the function
gbiplot() as implemented in ASRtriala can read prediction tables where some of the
genotypes have missing records on some locations. In this case, the function will proceed to
perform imputation using the library mice. This should be done with care, and only for
small proportions of missing data. Further details can be found in the help associated with
this function.

5.2 Calculating Stability Indexes

The selection of the best genotypes by observing their performance across several sites or
environments is often challenging. This task is facilitated by the use of biplots (as indicated
above) but also with the calculation of stability measures or coefficients. ASRtriala includes
the function stability() that calculates four indexes: superiority, static, Wricke and rank.
More details can be found in the documentation for this function. However, these are only
a few of the measures available in the literature.
We will illustrate this function by using the same predictions table used in gbiplot(). The
code below calculates the static stability coefficient, which is defined, for each genotype,
as the variance between its predictions between locations. Hence, the smaller the value the
more stable a genotype is. This index only provides a measure of the consistency of the
genotype and not its performance, but this is helped by some enhanced graphical output.

stab.index <- stability(data = met.model.fa4$predictions,
trial = "location", gen = "gen", resp = "predicted.value",
method = "static", best = "min", plot = TRUE, top = TRUE,
bottom = TRUE, percentage = 2)

The function above, besides requiring the specification of the data frame and its columns,
allows for additional options of plots and levels of genotypes to assist with interpretation.
The plot shown below is found under $stability.plot and you can find on the top right
some of the most unstable genotypes. In the bottom right we have genotype NE16402, which
is one of the most stable ones, and also presents a very good phenotypic mean (~76). There
are other genotypes with better yield, for example Freeman is the one farthest to the right
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but it is quite unstable. Their predicted values are presented in the table below, where it is
easy to see that NE16402 is more stable.

subset.preds <- met.model.fa4$predictions[met.model.fa4$predictions$gen ==
"NE16402" | met.model.fa4$predictions$gen == "Freeman",
]

subset.preds[order(subset.preds$gen), ]

## location gen predicted.value std.error status extrap
## 2 Alliance Freeman 81.922 0.94647 Estimable FALSE
## 275 Clay_Center Freeman 45.342 0.88876 Estimable FALSE
## 548 Grant_D Freeman 87.910 1.59695 Estimable FALSE
## 821 Lincoln Freeman 68.734 1.42379 Estimable FALSE
## 1094 Lincoln_IM Freeman 98.328 2.44535 Estimable FALSE
## 1367 McCook Freeman 93.007 2.59150 Estimable FALSE
## 1640 North_Platte Freeman 81.416 1.55919 Estimable FALSE
## 1913 Sidney Freeman 74.637 0.91991 Estimable FALSE
## 5 Alliance NE16402 74.848 2.63940 Estimable FALSE
## 278 Clay_Center NE16402 62.311 2.58402 Estimable FALSE
## 551 Grant_D NE16402 83.796 3.10765 Estimable FALSE
## 824 Lincoln NE16402 72.317 3.72169 Estimable FALSE
## 1097 Lincoln_IM NE16402 93.219 4.71437 Estimable FALSE
## 1370 McCook NE16402 79.373 6.49888 Estimable FALSE
## 1643 North_Platte NE16402 73.101 4.25059 Estimable FALSE
## 1916 Sidney NE16402 70.793 2.69808 Estimable FALSE
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5.3 Enhancing factor analytic output

One advantage of fitting a factor analytic model for multi-environment data is that both
the variance components and the random effects associated with the GxE nested structure
provide relevant information to understand the dynamics of this GxE. They also help with
selecting the best genotypes across environments in terms of identifying those adapted to
some specific environments (specificity) or those that are stable across most environments
(broad adaptability). A more detailed case illustrating an application of this under an FA
structure can be found at Oliveira et al. (2020).
We will be using the function fa.summary() from ASRtriala to obtain additional output
and to generate informative plots. In the following code we are requesting several elements:

fa.extras <- fa.summary(mod.met = met.model.fa4, gen.id = "Freeman",
factor.loading = 1, type.resp = "blup", type.plot = "regression.plot",
rotation = "svd", trend = "coefficient")

Let’s first start by looking at some of the elements that are part of the FA model. Recall that
earlier we observed the loadings for each of the factors, but their interpretation is facilitated
with the use of a rotation; in this case we have requested the Singular Value Decomposition
(svd) rotation which is shown below:

fa.extras$fa.loadings.rot

## FA1 FA2 FA3 FA4
## Alliance 7.0615 -0.099745 1.7615 -1.63152
## Clay_Center 5.4564 -3.351806 -2.0365 -1.66581
## Grant_D 7.6214 1.243889 1.0574 -2.01984
## Lincoln 8.6726 -4.354766 -1.7765 2.25524
## Lincoln_IM 7.7067 -2.937918 3.4668 1.30847
## McCook 6.9399 4.700439 1.3020 0.42163
## North_Platte 6.2613 5.101829 -1.7890 1.87697
## Sidney 6.2892 0.851746 -2.9464 -1.32241

This rotation affects not only the loadings (variance components) but also some of the BLUP
values, particularly the coefficients, which are associated with the slope of each of the factor
for a given genotype. These are shown below for Freeman, and a large positive (or negative)
value indicates a strong sensitivity to the underlying (unknown) factor.

fa.extras$comp.gen.rot$solution

## [1] 1.96595 0.43299 0.77080 0.13012
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Another very important output that is part of the complete model is the proportion of the
cumulative variance explained by each of the factors (in this case four). This can be obtained
for all locations together or by trial, as shown below.

fa.extras$cum.var.rot

## var.exp% cum.var.exp%
## FA1 50.4873 50.487
## FA2 11.2843 61.772
## FA3 4.6940 66.466
## FA4 2.7522 69.218

fa.extras$cum.var.trial.rot

## FA1 FA2 FA3 FA4 cum.var.exp%
## Alliance 68.469 0.013661 4.2606 3.65501 76.398
## Clay_Center 31.408 11.851971 4.3754 2.92742 50.563
## Grant_D 89.596 2.386613 1.7246 6.29291 100.000
## Lincoln 73.437 18.516016 3.0813 4.96597 100.000
## Lincoln_IM 65.907 9.578025 13.3366 1.89987 90.722
## McCook 31.451 14.428110 1.1070 0.11609 47.103
## North_Platte 38.900 25.826722 3.1757 3.49567 71.398
## Sidney 35.351 0.648374 7.7588 1.56292 45.321

The above output indicates that approximately 69.2% of the total genetic variability
(genotype + genotype-by-environment) is explained by these four rotated factors, where
the first rotated factor explains a large portion (50.5%). Also we observe that for some
for locations the genetic component is completely described by these four factors (e.g.,
$Lincoln), whilst others have a large portion of unexplained genetic variation (e.g.,
$Sidney). All of these are good result to help make further inferences on this analysis.
In the above code we requested some specific output for the genotype Freeman but this
can be requested for any genotype. Let’s now obtain a plot for this genotype using its
BLUP values (type.resp = "blup") with a regression (type.plot = "regression.plot")
where the slope of the regression line is described by its BLUP component coefficient
(trend = "coefficient"). We will also request the associated data frame ($fa.gen) that
presents the relevant information for this genotype.

fa.extras$fa.plot
fa.extras$fa.gen
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The above plot indicates a strong association of the genotype, with the first factor loading
showing a positive trend (in this case with a slope of 1.97). However, the relationship is not
very strong with some large deviations of the BLUP values with respect to the regression
line, reflecting unexplained GxE by this factor (although some is explained by the other
factors). This indicates an important sensitivity of this genotype to the first underlying
factor. Similar plots can be obtained for the other factors, but also it is possible to request
the added variable plot (type.plot = "added.plot") that will show only the contribution
of the respective factor to the BLUP (or predicted) value.

## location gen predicted.value blup.value
## 2 Alliance Freeman 81.922 20.7622
## 275 Clay_Center Freeman 45.342 8.1452
## 548 Grant_D Freeman 87.910 16.0782
## 821 Lincoln Freeman 68.734 14.0865
## 1094 Lincoln_IM Freeman 98.328 18.4494
## 1367 McCook Freeman 93.007 24.5526
## 1640 North_Platte Freeman 81.416 15.5879
## 1913 Sidney Freeman 74.637 17.8141

## x.value y.value dfa1 dfa2 dfa3 dfa4
## 2 7.0615 20.7622 13.882 -0.043189 1.35776 -0.212301
## 275 5.4564 8.1452 10.727 -1.451306 -1.56976 -0.216763
## 548 7.6214 16.0782 14.983 0.538594 0.81504 -0.262831
## 821 8.6726 14.0865 17.050 -1.885581 -1.36930 0.293463
## 1094 7.7067 18.4494 15.151 -1.272096 2.67218 0.170264
## 1367 6.9399 24.5526 13.643 2.035254 1.00359 0.054865
## 1640 6.2613 15.5879 12.309 2.209053 -1.37896 0.244240
## 1913 6.2892 17.8141 12.364 0.368800 -2.27109 -0.172078
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The output data frame $fa.gen shown above presents several elements of information about
this genotype and is the one used to generate the previous plot (see columns x.value and
y.value). Besides the predicted and BLUP values for this genotype we have the differentials
(added values) that a given loading explains on the response variable selected for the genotype
of interest (these are dfa1, dfa2, dfa3 and dfa4).
In the composite figure shown below, we have selected two genotypes Freeman and NE16401.
Here, we can observe the different response patterns from each of the genotypes. For Freeman
(top row) clearly larger BLUP values are observed as the loadings of each of the factors
increases. In contrast, for NE16401 it can be noticed an almost complete insensitivity to the
loadings of the first factor and some mild negative sensitivity to the second factor. However,
note that the ranges of BLUP values between these two genotypes differs considerably.

5.4 Enhancing graphical output from ASRtriala

Most plots generated by ASRtriala have a restricted set of options and in some cases we
might like to modify them or add additional attributes. In ASRtriala all plots were produced
using the package ggplot2, which is a very flexible library and, as shown below, allows for
further modifications outside of their function. We illustrate this in the following example.
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We will be using the stability plot generated earlier by the function stability(). The code
below presents the original figure with some small modifications.

stab.index <- stability(data = met.model.fa4$predictions,
trial = "location", gen = "gen", resp = "predicted.value",
method = "static", best = "min", plot = TRUE, top = FALSE,
bottom = FALSE, percentage = 2)

stab.index$stability.plot

Now we will like to alter this plot. For example, we want to add a vertical line cutting the
axis on a prediction value of 76 and a title. This is all shown below.

stab.index$stability.plot + ggplot2::theme_classic() +
ggplot2::geom_vline(xintercept = 76, linetype = "dashed",

color = "red") + ggplot2::ggtitle("Stability Plot - Static index") +
ggplot2::xlab("Mean Yield (bushels/acre)")
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To make further enhancement on any of these plots we recommend reading the help
associated with the package ggplot2.
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